

SDC-H1T1

Duct Humidity & Temperature Transmitter

Features

Replaceable sensor element

Humidity and temperature measurement for air ducts Minimum and maximum value memory 0...10V, 0...20mA or 2...10V, 4...20mA measuring

o...10V, 0...20mA or 2...10V, 4...20mA measuring signals selectable with jumpers

Optional alternative signal ranges programmable Selectable averaging signal

Optional LCD display (OPC-S) or external display (OPA-S)

Status LED

Applications

Humidity & temperature measurement for supply and return air ducts in heating, ventilation and air conditioning applications.

Recording of minimum and maximum values for critical environments

Supervision of critical humidity and temperatures

A unique capacitive sensor element is used for measuring relative humidity while temperature is measured by a bandgap sensor. The applied measuring technology guarantees excellent reliability and long term stability. The microprocessor samples the humidity and temperature once per second. It calculates an averaging signal over a preset number of seconds and generates the output signal based on lower and upper signal range values. Standard range is 0...100% rH, -40...60°C (-40...140°F) and 10 seconds average. The signal range of the temperature measurement and the averaging samples may be customized.

The output signal range and type may be customized by jumpers and if required by a programming tool. Standard signal ranges are 0-10VDC, 2-10VDC, 4-20mA and 0-20mA. These ranges can be set by jumpers. Other ranges can be set by using a programming tool. (OPA-S or OPC-S)

A version with display is possible by ordering the integrated display accessory OPC-S

Minimum and Maximum Values:

Using the programming tool, the user has the option to read out and reset minimum and maximum values. The minimum and maximum values may as well be used as output signals. The minimum and maximum values are saved into the EEPROM and are available after a power interruption.

Ordering

In order to receive an operational unit, the signal converter, the sensor element and the conduit connector or cable gland need to be ordered. Optionally a display module may be added.

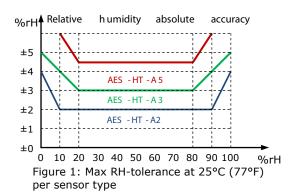
Signal converter

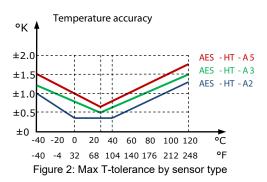
Item Name	Item Code	Des cription/Option		
SDC-H1T1-08	40-30 0064	Signal converter for duct mounting: probe length 77mm (3")		
SDC-H1T1-16	40-30 0065	Signal converter for duct mounting: probe length 157mm (6.2")		
SDC-H1T1-x-W0	40-30 00xx-0	0 Temperature Range: -4060°C (-40140°F) (Default)		
SDC-H1T1-x-W1	40-30 00xx-1	1 Temperature Range: -3535°C (-3195°F)		
SDC-H1T1-x-W2	40-30 00xx-2	2 Temperature Range: 050°C (32122°F)		
SDC-H1T1-x-W3	40-30 00xx-3	3 Temperature Range: Special – Specify in order		

Sensor element

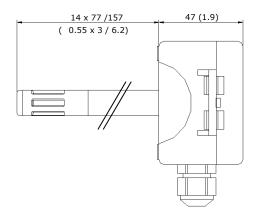
Item Name	Item Code	Humidity Accuracy [%rH]	Temperature Accuracy [K] @25°C (77°F)	Description/Option
AES-HT-A2	40-50 0031-2	± 2%	± 0.3°	
AES-HT-A3	40-50 0031-3	± 3%	± 0.4°	Humidity - temperature sensor element
AES-HT-A5	40-50 0031-5	± 4.5%	± 0.5°	

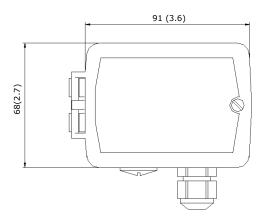
Accessories


Item Name	Item Code	Description/Option
OPC-S	40-50 0029	Built in display & programming module
OPA-S	40-50 0006	External display module
AMS-1	20-10 0116	Weather shield to protect the sensor element
AMC-1	20-10 0035	Cable gland PG9 for cables 4 – 8 mm (AWG 6 – 1)
AMC-2	20-10 0067	Conduit connector NPT 1/2



١
Į


Power Supply	Operating Voltage Transformer	24 V AC 50/60 Hz 10%, 24VDC 10% SELV to HD 384, Class II, 48VA max
	Power Consumption	Max 2 VA
	Terminal Connectors	For wire 0.342.5 mm ² (AWG 2412)
Sensing Probe	Humidity Sensor: Range Measuring Accuracy Hysteresis Repeatability	Capacity sensor element 0100 % rH See Figure 1 1% 0.1%
	Stability	< 0.5% / year
	Temperature Sensor: Range Measuring Accuracy Repeatability	Bandgap sensor -4070°C (-40158°F) See Figure 2 0.1°C, 0.2°F
Signal Outputs	Analog Outputs Output Signal Resolution Maximum Load	DC 0-10V or 020mA 10 Bit, 9.7 mV, 0.019.5 mA Voltage: \geqslant 1k Ω Current: \leqslant 500 Ω
Environment	Operation Climatic Conditions Temperature Humidity	To IEC 721-3-3 class 3 K5 -4070°C (-40158°F) <95% R.H. non-condensing
	Transport & Storage Climatic Conditions Temperature Humidity Mechanical Conditions	To IEC 721-3-2 and IEC 721-3-1 class 3 K3 and class 1 K3 -4080°C (-40176°F) <95% R.H. non-condensing class 2M2
Standards	conformity EMC Directive Low Voltage Directiv	2004/108/EC 2006/95/EC
	Product standards Automatic household and similar use Special requirement on temp controls	EN 60 730 -1
	Electromagnetic compatibility domestic and industrial secto	r Emissions: EN 60 730-1 Immunity: EN 60 730-1
	Degree of Protection to EN 60 Mounted probe down with AM	
	Safety Class	III (IEC 60536)
General		back part PC+ABS (UL94 class V-0) naterial PTFE coated 1µm pores
	Dimensions (H x W x D):Tran	



Dimensions mm(inch)

Mechanical design and installation

The unit consists of two parts: (a) The back part with the probe and (b) the cover.

Mounting location

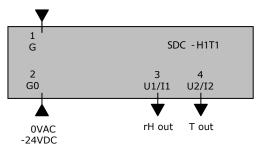
The Duct controller should be installed directly on the duct, in a dry, protected area where the air stream is well mixed. Locate a supply air sensor two or three meters downstream from the nearest fan and coil.

Mount the return air sensor close to the air inlet but downstream from a return fan if one is present.

At least three duct diameters away from a bend or another source of turbulence.

Warning about storage, packaging and usage environment

The sensing part is a polymer, which measures the humidity in the ambient air. For proper sensor operation some mandatory precautions need to be taken during storage, packaging and usage.


The transmitter and its sensing element should not be packaged, stored or used in out-gassing plastic materials, which could cause sensor contamination. In particular, it is recommended not to use any glue or adhesive tapes (Sellotape, Scotch-Tape, Tesa-Film, etc.) within the package or close proximity of the sensor. Foamed materials often cause contamination problems and should not be used to package the transmitter. Best packaging material is a simple cardboard box or a deep-drawn plastic case in a cardboard box.

Installation

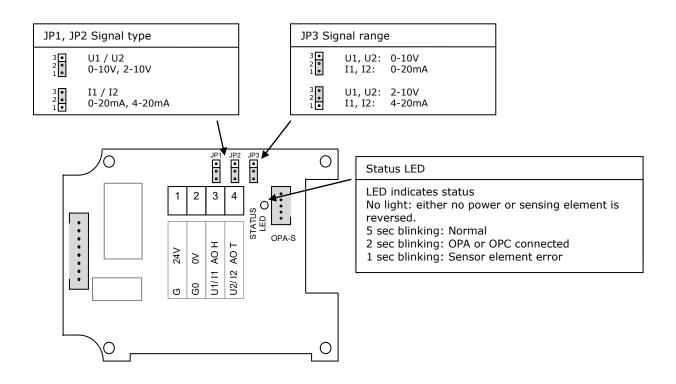
- 1. Stick the round seal on the back part to prevent air leakage.
- 2. Turn the single screw on the cover counterclockwise and remove cover.
- 3. Drill a hole with a diameter of 16mm (5/8") in the air duct.
- 4. Insert the back part and mark the location for the mounting holes on the duct. Remove the back part from the duct.
- 5. Drill two holes for the duct screws or use self tapping screws diagonal according to the marks made in previous step.
- 6. Insert the probe in the hole; secure the back part to the duct with two screws.
- 7. Connect the conductors to the terminals of the back part according to wiring diagram.
- 8. While in the open position, slide the two hooks of the cover into the latch at the left side of the back part.
- 9. Close the front part.
- 10. Tighten the single screw on the cover clockwise to secure the cover to the back part. There is no need to tighten the screw too much.

Connection terminals

24V ADC

- 1: G Power supply 24VAC, +24VDC
- 2: G0 Power supply 0VAC, -24VDC
- 3: U1 JP1 = 1-2, voltage output of humidity transmitter 0...10V or 2...10V (JP3)
- 3: I1 JP1 = 2-3, current output of humidity transmitter 0...20mA or 4...20mA (JP3)
- 4: U2 JP2 = 1-2, voltage output of temperature transmitter 0...10V or 2...10V (JP3)
- 4: I2 JP2 = 2-3, current output of temperature transmitter 0...20mA or 4...20mA (JP3)

Output signal configuration


The analog output signal type may be configured with a jumper for 0-10 VDC or 0-20 mA control signals. The jumpers are located next to the terminal connector of each analog output. See table below for jumper placement. The factory setting is to 0-10 VDC.

The signal range may be set with JP3 for both analog outputs. JP3 will only operate if the output range specified with OP01 and OP02 or OP04 and OP05 is left at the default position of 0...100%. With any other setting the position of JP3 has no influence and the range defined with the output parameters applies.

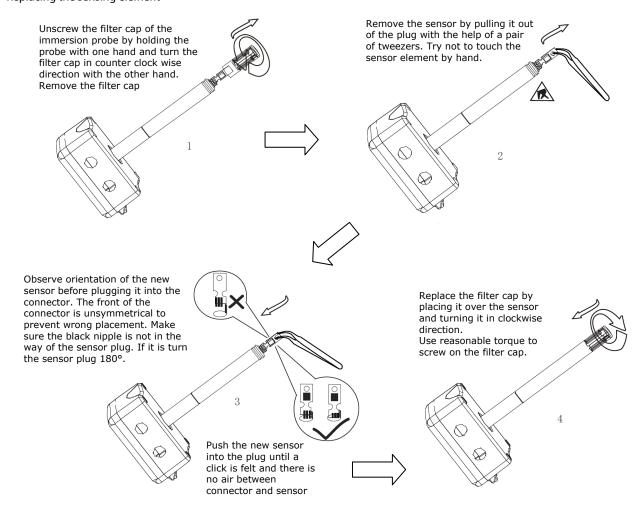
Signal Type	JP1, JP2
0 - 10 V	(1-2)
0 – 20 mA	(2-3)

Signal Range	JP3
0 - 10 V, 0 - 20 mA	(1-2)
2 - 10 V, 4 - 20 mA	(2-3)

Jumper Settings

Configuration parameters

The transmitter can be adapted to fit perfectly into any application by adjusting the software parameters. The parameters are set with the operation terminals OPA-S or OPC-S. The OPA-S may also be used as remote indicator.


Input configuration

Parameter	Description	Range	Default
IP 00	TI1: Celsius or Fahrenheit, C = OFF, F = ON	ON, OFF	OFF
IP 01	TI1: Samples taken for averaging control signal	1255	10
IP 02	TI1: Calibration	-1010	0
IP 03	TI1: Minimum temperature	-40215 °C/F	0 °C
IP 04	TI1: Maximum temperature	-40215 °C/F	50°C
IP 05	H1: Show Percent	ON, OFF	ON
IP 06	H1: Samples taken for averaging control signal	1255	10
IP 07	H1: Calibration	-1010%	0

Output configuration

Parameter	Description	Range	Default
OP 00	AO1: Humidity: Configuration of output signal:	0 - 2	0
	0 = Feedback humidity input,		
	1 = Feedback humidity minimum value		
	2 = Feedback humidity maximum value		
OP 01	AO1: Humidity: Minimum limitation of output signal	0 - Max %	0%
OP 02	AO1: Humidity: Maximum limitation of output signal	Min - 100%	100%
OP 03	AO2: Temperature: Configuration of output signal:	0 - 2	0
	0 = Feedback temperature input,		
	1 = Feedback temperature minimum value		
	2 = Feedback temperature maximum value		
OP 04	AO2: Temperature: Minimum limitation of output signal	0 – Max %	0%
OP 05	AO2: Temperature: Maximum limitation of output signal	Min - 100%	100%

Replacing the sensing element

