

SOC-H1T

Outdoor Humidity Transmitter & Temperature Sensor

Features

Replaceable sensor element

Outdoor humidity and temperature measurement

Minimum and maximum value memory

0...10V, 0...20mA or 2...10V, 4...20mA measuring signals

selectable with jumpers

Optional alternative signal ranges programmable

Selectable averaging signal

Optional LCD display (OPC-S) or external display (OPA-S)

Status LED

Applications

Outdoor humidity & temperature measurement for heating, ventilation and air conditioning applications.

Recording of minimum and maximum values for

critical environments

Supervision of critical humidity and

temperatures

Humidity & Temperature Transmitter

A unique capacitive sensor element is used for measuring relative humidity. The applied measuring technology guarantees excellent reliability and long term stability. The

microprocessor samples the humidity once per second. It calculates an averaging signal over a preset number of seconds and generates the output signal.

The output signal range and type may be customized by jumpers and if required by a programming tool. Standard signal ranges are 0-10VDC, 2-10VDC, 4-20mA and 0-20mA. These ranges can be set by jumpers. Other ranges can be set by using a programming tool. (OPA-S or OPC-S)

A version with display is possible by ordering the integrated display accessory OPC-S.

Minimum and Maximum Values:

Using the programming tool, the user has the option to read out and reset minimum and maximum values. The minimum and maximum values may as well be used as output signals. The minimum and maximum values are saved into the EEPROM and are available after a power interruption.

Temperature Sensor

The sensor measures the temperature by use of a NTC, PT, or NI-sensing element. The sensing element is either a glass packed thermistor with a negative temperature coefficient, a platinum film or a nickel thin layer based probe. Its resistance changes according to the temperature. The change follows a specified curve. Contact our sales department for curves not yet listed below.

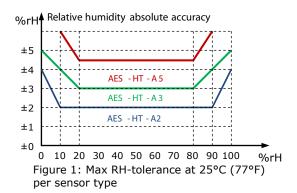
In order to receive an operational unit, the signal converter, the sensor element and the conduit connector or cable gland need to be ordered. Optionally a display module and a weather shield may be added.

Signal converter

Item Name	Item Code	Description/Option
SOC-H1T	40-30 0071	Signal converter for humidity sensor with temperature probe

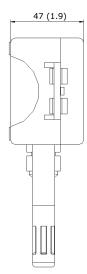
Sensor element

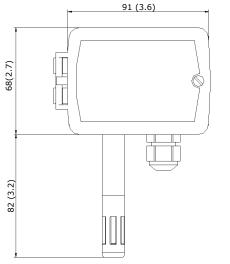
Item Name	Item Code			Description/Option
AES-HTn3	40-50 0032	NTC 3kΩ at 25°C (77°C)	B _{25/50} 3935	
AES-HTn10	40-50 0033	NTC 10kΩ at 25°C (77°C)	B _{25/50} 3935	
AES-HTn11	40-50 0034	NTC 10kΩ at 25°C (77°C)	B _{25/50} 3630	
AES-HTn12	40-50 0043	NTC 10kΩ at 25°C (77°F)	B _{25/50} 3380	
AES-HTn20	40-50 0035	NTC 20kΩ at 25°C (77°C)	B _{25/50} 4200	
AES-HTn100	40-50 0036	NTC 100kΩ at 25°C (77°C)	B _{25/50} 4200	
AES-HTp1	40-50 0037	PT100	EN60751	
AES-HTp2	40-50 0038	PT1000	EN60751	
AES-HTk5	40-50 0039	NI1000	5000 ppm/K	
AES-HTxx-A2	40-50 00xx-2	2%		
AES-HTxx-A3	40-50 00xx-3	3%		Accuracy Option of Humidity - sensor element
AES-HTxx-A5	40-50 00xx-5	4.5%		Johnson Cicinent



Accessories

Item Name	Item Code	Description/Option
OPC-S	40-50 0029	Built in display & programming module
OPA-S	40-50 0006	External display module
AMS-1	20-10 0116	Weather shield to protect the sensor element
AMC-1	20-10 0035	Cable gland PG9 for cables 4 – 8 mm (AWG 6 – 1)
AMC-2	20-10 0067	Conduit connector NPT 1/2


Technical Specification


Power Supply	Operating Voltage	24 V AC 50/60 Hz 10%, 24VDC 10%	
	Transformer Power Consumption	SELV to HD 384, Class II, 48VA max Max 2 VA	
	<u> </u>		
C : D !	Terminal Connectors	For wire 0.342.5 mm ² (AWG 2412)	
Sensing Probe	Humidity Sensor:	Capacity sensor element 0100 % rH	
	Range Measuring Accuracy	See Figure 1	
	Hysteresis	1%	
	Repeatability	0.1%	
	Stability	< 0.5% / year	
	Thermistor:		
	Accuracy: -400°C (-4032°F):	0.5 K	
	050°C (32122°F):	0.2 K	
	5070°C (122158°F):	0.5 K	
	Platinum-Film:	PT according EN 60751	
	Range: (Probe only) Accuracy	-4070°C (-94158°F) EN 60751, Class B	
	Nickel Thin Layer:	1000 Ω at 0°C, 5000 ppm/K	
	Range: (Probe only)	-4070°C (-76158°F)	
	Accuracy	DIN 43760	
Signal Outputs	Analog Outputs		
,	Output Signal	DC 0-10V or 020mA	
	Resolution	10 Bit, 9.7 mV, 0.019.5 mA	
	Maximum Load	Voltage: ≥ 1 k Ω Current: ≤ 500 Ω	
Environment	Operation	To IEC 721-3-3	
	Climatic Conditions	class 3 K5	
	Temperature	-4070°C (-40158°F)	
	Humidity	<95% R.H. non-condensing	
	Transport & Storage	To IEC 721-3-2 and IEC 721-3-1	
	Climatic Conditions Temperature	class 3 K3 and class 1 K3 -4080°C (-40176°F)	
	Humidity	<95% R.H. non-condensing	
	Mechanical Conditions	class 2M2	
Standards	conformity		
	EMC Directive	2004/108/EC	
	Low Voltage Directive	2006/95/EC	
	Product standards Automatic electrical		
	controls for household and similar use	EN 60 730 -1	
	Special requirement on temperature	EN 60 730 - 2 - 9	
	dependent controls		
	Electromagnetic compatibility for	Emissions: EN 60 730-1	
	domestic and industrial sector	Immunity: EN 60 730-1	
	Degree of Protection to EN 60529	IP63 if correctly mounted with AMS-1	
	Safety Class	III (IEC 60536)	
General	Housing materials Cover, back part	PC+ABS (UL94 class V-0)	
	Filter material	PTFE coated 1µm pores	
	Dimensions (H x W x D):	150 x 91 x 47mm (5.9" x 3.7" x 1.9")	
	Weight (including package)	220g (7.8 oz)	

Dimensions mm (inch)

Mechanical design and installation

The unit consists of two parts: (a) The back part with the probe and (b) the cover.

Mounting location

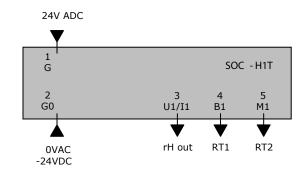
The transmitter should be installed, probe facing down, directly on the wall, in a weather protected area. The weather shield accessory is recommended, in case the transmitter is exposed to weather and direct sunlight.

Warning about storage, packaging and usage environment

The sensing part is a polymer, which measures the humidity in the ambient air. For proper sensor operation some mandatory precautions need to be taken during storage, packaging and usage.

The transmitter and its sensing element should not be packaged, stored or used in out-gassing plastic materials, which could cause sensor contamination. In particular, it is recommended not to use any glue or adhesive tapes (Sellotape, Scotch-Tape, Tesa-Film, etc.) within the package or close proximity of the sensor. Foamed materials often cause contamination problems and should not be used to package the transmitter. Best packaging material is a simple cardboard box or a deep-drawn plastic case in a cardboard box.

Installation


- 1. Turn the single screw on the cover counterclockwise and remove cover.
- 2. Mark the location for the mounting holes on the wall.
- 3. Depending on the wall material, drill two holes for plugs or use self tapping screws.
- 4. Mount the transmitter flat on a wall in a weather protected area. The probe must face downwards. A weather shield should be added to protect the sensor element from direct water and sun light.
- 5. Connect the conductors to the terminals according to wiring diagram.
- 6. While in the open position, slide the two hooks of the cover into the latch at the left side of the back part.
- 7. Close the front part.
- 8. Tighten the single screw on the cover clockwise to secure the cover to the back part. There is no need to tighten the screw too much.

Installation of the weather shield AMS - 1:

- 1. Unscrew filter cap by turning it counter clockwise
- 2. Make sure O-ring fits nicely inside small opening of AMS-1 and thread of sensor probe is clean
- 3. Place AMS-1 over sensor probe with small opening facing upwards
- 4. Replace filter cap and carefully fix AMS-1 by screwing filter cap on clockwise

Connection terminals

- 1: G Power supply 24VAC, +24VDC
- 2: G0 Power supply 0VAC, -24VDC
- 3: U1 JP1 = 1-2, voltage output of humidity transmitter 0...10V or 2...10V (JP3)
- 3: I1 JP1 = 2-3, current output of humidity transmitter 0...20mA or 4...20mA (JP3)
- 4: B1 Passive temperature sensor probe signal
- 5: M1 Passive temperature sensor probe signal

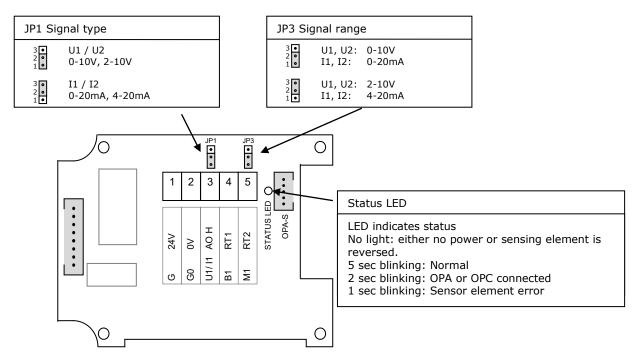
JP1

(1-2)

Output signal configuration

The analog output signal type may be configured with a jumper for 0-10 VDC or 0-20 mA control signals. The jumpers are located next to the terminal connector of each analog output. See table below for jumper placement. The factory setting is to 0-10 VDC.

0 – 20 mA	(2-3)
Signal Range	JP3


Signal Type

0 - 10 V

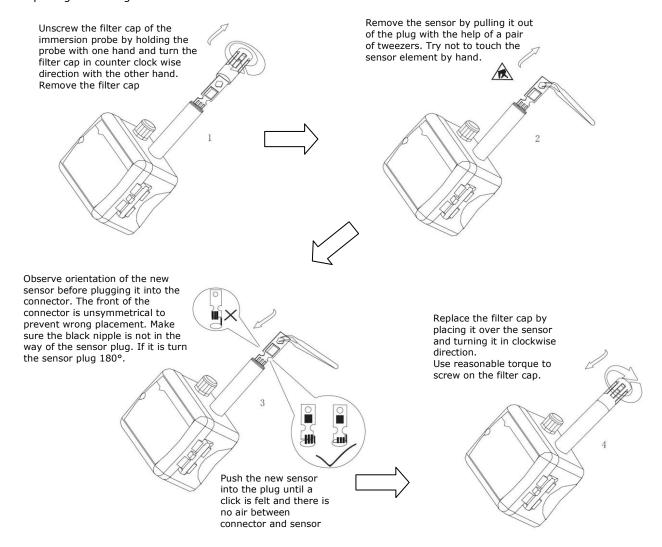
The signal range may be set with JP3 for both analog outputs. JP3 will only operate if the output range specified with OP01 and OP02 is left at the default position of 0...100%. With any other setting the position of JP3 has no influence and the range defined with the output parameters applies.

Signal Range	JP3
0 - 10 V, 0 - 20 mA	(1-2)
2 - 10 V, 4 - 20 mA	(2-3)

Jumper Settings

Configuration parameters

The transmitter can be adapted to fit perfectly into any application by adjusting the software parameters. The parameters are set with the operation terminals OPA-S or OPC-S. The OPA-S may also be used as remote indicator.


Input configuration

Parameter	Description	Range	Default
IP 00	H1: Show Percent	ON, OFF	ON
IP 01	H1: Samples taken for averaging control signal	1255	10
IP 02	H1: Calibration	-1010%	0

Output configuration

Parameter	Description	Range	Default
OP 00	AO1: Humidity: Configuration of output signal:	0 - 2	0
	0 = Feedback humidity input,		
	1 = Feedback humidity minimum value		
	2 = Feedback humidity maximum value		
OP 01	AO1: Humidity: Minimum limitation of output signal	0 - Max %	0%
OP 02	AO1: Humidity: Maximum limitation of output signal	Min - 100%	100%

Replacing the sensing element

