

SRC-C1 Indoor CO2 Transmitter

Features

- Indoor CO2 measurement
- Indication with three color led
- Minimum and maximum value memory
- 0...10V, 0...20mA or 2...10V, 4...20mA measuring signals selectable with jumpers
- Optional alternative signal ranges programmable
- May be used as simple P-controller
- Selectable averaging signal
- Optional external display (OPA-S)
- Status LED

Applications

- Indoor CO2 measurement.
- Recording of minimum and maximum limits for critical environments
- Direct control of extraction fan.

CO2 Transmitter

The CO2 concentration is measured through non-dispersive infrared (NDIR) waveguide technology with ABC automatic background calibration algorithm. The applied measuring technology guarantees excellent reliability and long term stability. The microprocessor samples the CO2 once per second. It calculates an averaging signal over a preset number of seconds and generates the output signal.

The output signal range and type may be customized by jumpers and if required by a programming tool. Standard signal ranges are 0-10VDC, 2-10VDC, 4-20mA and 0-20mA. These ranges can be set by jumpers. Other ranges can be set by using the external display and programming module. (OPA-S)

Minimum and Maximum Values:

Using a display & programming accessory, the user has the option to read out and reset minimum and maximum values. The minimum and maximum values may as well be used as output signals. The minimum and maximum values are saved into the EEPROM and are available after a power interruption.

Indication of air quality:

A three color LED is used to indicate air quality: Green light for low CO2 concentration, orange light for medium and red light for high concentration. The levels for low-medium-high may be programmed. Default settings are 0 ppm< low < 800 ppm< medium < 1500 ppm high.

Use as P-controller

Set a minimum concentration when the extract fan should start to run at its minimum speed. For example 700 ppm. Set this as the minimum value in IP03 parameter. Then define the value when the fan should run at full speed, for example 1500 ppm and set this value in IP04. Your transmitter has now been converted into an air quality P-controller! The fan will start to run if the CO2 concentration is higher than 700 ppm. It increases to its maximum when CO2 concentration reaches 1500 ppm. y

Ordering

Item Name	Item Code	Description/Option
SRC-C1	40-30 0062	CO2 transmitter

Accessories

Item Name	Item Code	Description/Option
OPA-S	40-50 0006	External display module.
		For the correct display of values V1.4 and later is required

Maintenance

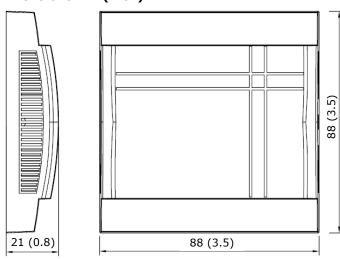
The SRC-C1 CO2 transmitter is maintenance free in normal environments thanks to the built-in self-correcting ABC algorithm. Discuss your application with Vector Controls GmbH in order to get advice for a proper calibration strategy.

When checking the sensor accuracy, PLEASE NOTE that the sensor accuracy is defined at continuous operation (at least 3 weeks after installation)!

Error messages visible on OPA-S

Following error condition may be displayed:

Err1: Communication time out between terminal unit and transmitter. Verify wiring, connections and state of sensor.

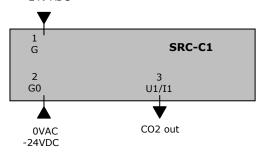

Err3: The sensing element is damaged or became disconnected.

Technical Specification

Power Supply	Operating Voltage	24 V AC 50/60 Hz ± 10%, 24VDC ± 10% SELV to HD 384, Class II transformer, 48VA max	
	Power Consumption	Max 2 VA	
Connection	Terminal Connectors	For wire 0.342.5 mm ² (AWG 2412)	
CO2 measurement	Sensing Method	Non-dispersive infrared (NDIR) waveguide technology with ABC automatic background calibration algorithm	
	Sampling Method	Diffusion	
	Response Time (T _{1/e})	20 sec diffusion time	
	Measurement Range	0 - 5000 ppm _{vol.}	
	Repeatability	± 20 ppm ± 1 % of measured value	
	Accuracy	± 30 ppm ± 3 % of measured value	
	Pressure Dependence	+ 1.6 % reading per kPa deviation from normal pressure, 100 kPa	
Signal Outputs	Analog Outputs Output Signal Resolution Maximum Load	DC 0-10V or 020mA 10 Bit, 9.7 mV, 0.019.5 mA 20 mA, 500 ₉	
Environment	Operation Climatic Conditions Temperature Humidity	To IEC 721-3-3 class 3 K5 050°C (32122°F) <95% R.H. non-condensing	
	Transport & Storage Climatic Conditions Temperature Humidity	To IEC 721-3-2 and IEC 721-3-1 class 3 K3 and class 1 K3 -3070°C (-22158°F) <95% R.H. non-condensing	
	Mechanical Conditions	class 2M2	
Standards	Mechanical Conditions conformity EMC Directive Low Voltage Directive	class 2M2 2004/108/EC 2006/95/EC	
Standards	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature	2004/108/EC	
Standards	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9	
Standards	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls Electromagnetic compatibility for	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9 Emissions: EN 60 730-1	
Standards	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls Electromagnetic compatibility for industrial and domestic sector	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9 Emissions: EN 60 730-1 Immunity: EN 60 730-1	
Standards	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls Electromagnetic compatibility for industrial and domestic sector Degree of Protection	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9 Emissions: EN 60 730-1 Immunity: EN 60 730-1 IP30 to EN 60 529	
	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls Electromagnetic compatibility for industrial and domestic sector Degree of Protection Safety Class	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9 Emissions: EN 60 730-1 Immunity: EN 60 730-1 IP30 to EN 60 529 III (IEC 60536)	
Standards Housing Materials	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls Electromagnetic compatibility for industrial and domestic sector Degree of Protection Safety Class Cover	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9 Emissions: EN 60 730-1 Immunity: EN 60 730-1 IP30 to EN 60 529 III (IEC 60536) Fire proof ABS plastic	
	conformity EMC Directive Low Voltage Directive Product standards Automatic electrical controls for household and similar use Special requirement on temperature dependent controls Electromagnetic compatibility for industrial and domestic sector Degree of Protection Safety Class	2004/108/EC 2006/95/EC EN 60 730 -1 EN 60 730 - 2 - 9 Emissions: EN 60 730-1 Immunity: EN 60 730-1 IP30 to EN 60 529 III (IEC 60536)	

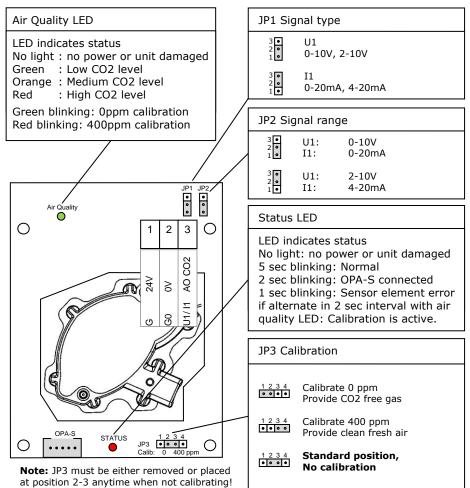
Dimensions mm(inch)

Mounting location


Mount the transmitter on a flat interior wall of the room to be controlled. Do avoid obstructions such as shelves, curtains and recesses. Do not place near heat sources, draft channels. Do not expose to direct sunlight.

Installation

- 1. Open the single screw on the cover and remove cover from mounting plate.
- 2. Fix the mounting plate to the flush mounting box or the wall surface
- 3. Connect the conductors to the terminals of the back part according to wiring diagram
- 4. The end of the conduit at the sensor must be sealed to prevent false measurements due to draughts through the conduit.
- 5. Slide the two hooks on top of the cover into the two latches on top of the mounting plate.
- 6. Close the cover.
- 7. With a Philips-type screw driver of size #2, carefully tighten the front holding screw to secure the cover to the back part. There is no need to tighten the screw too much.


Connection terminals

24V ADC

- 1: G Power supply 24VAC, +24VDC
- 2: G0 Power supply 0VAC, -24VDC
- 3: U1 JP1 = 1-2, voltage output of CO2 transmitter 0...10V or 2...10V (JP2)
- 3: I1 JP1 = 2-3, current output of CO2 transmitter 0...20mA or 4...20mA (JP2)

Jumper Settings

Output signal configuration

The analog output signal type may be configured with a jumper for 0-10 VDC or 0-20 mA control signals. The jumpers are located next to the terminal connector of each analog output. See table below for jumper placement. The factory setting is to 0-10 VDC.

The signal range may be set with JP2 for both analog outputs. JP2 will only operate if the output range specified with OP01 and OP02 is left at the default position of 0...100%. With any other setting the position of JP2 has no influence and the range defined with the output parameters applies.

Configuration parameters

The transmitter can be adapted to fit perfectly into any application by adjusting the software parameters. The parameters are set with the operation terminals OPA-S. The OPA-S may also be used as remote indicator. For correct display version 1.4 of OPA-S is required.

Input configuration

Parameter	Description	Range	Default
IP 00	Enable display of air quality LED on front.	ON, OFF	ON
IP 01	Samples taken for averaging control signal	1255	10
IP 02	Calibration	-1010%	0
IP 03	Minimum CO2 range ppm	09900 ppm	0 ppm
	(concentration when output is at its minimum.		
IP 04	Maximum CO2 range ppm	09900 ppm	2000 ppm
	concentration when output is at maximum)		
IP 05	Level for medium air quality (orange light)	09900 ppm	800 ppm
IP 06	Level for high air quality (red light)	09900 ppm	1500 ppm

Output configuration

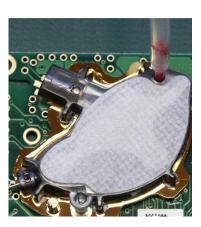
Parameter	Description	Range	Default
OP 00	AO1: CO2: Configuration of output signal:	0 - 2	0
	0 = Feedback CO2 input,		
	1 = Feedback CO2 minimum value		
	2 = Feedback CO2 maximum value		
OP 01	AO1: CO2: Minimum limitation of output signal	0 - Max %	0%
OP 02	AO1: CO2: Maximum limitation of output signal	Min - 100%	100%

Calibration

The default sensor OEM unit is maintenance free in normal environments thanks to the built-in self-correcting ABC algorithm (Automatic Baseline Correction). This algorithm constantly keeps track of the sensor's lowest reading over a 7 days interval and slowly corrects for any long-term drift detected as compared to the expected fresh air value of 400 ppm CO2.

Rough handling and transportation might, however, result in a reduction of sensor reading accuracy. With time, the ABC function will tune the readings back to the correct numbers. The default "tuning speed" is however limited to about 30 ppm/week. For post calibration convenience, in the event that one cannot wait for the ABC algorithm to cure any calibration offset, jumper 3 is provided for the operator to choose calibration options.

If jumper 3 is placed on position 1-2, for a minimum time of 8 seconds, the internal zero calibration is executed, in which case the sensor must be purged by some gas mixture free from CO2 (i.e. Nitrogen or Soda Lime CO2 scrubbed air). The air quality LED is blinking in green color alternately with the status LED in 2 second intervals. If jumper 3 Is placed on position 3-4, it is assumed that the sensor is operating in a fresh air environment (400 ppm CO2). The air quality LED is blinking in red color alternately with the status LED in 2 second intervals.


If unsuccessful, please wait at least 1 minute before repeating the procedure again. Make sure that the sensor environment is steady and calm!

Make sure to return jumper 3 to its default position of 2-3!

Zero calibration procedure

The zero calibration procedure is as follow:

- Connect the sensor on top with a tube (soft tubing 2x4 mm) and a nipple (nylon tubing 30x0.8x2.2 mm), see Figure 4 below. There are 2 alternative positions for nipple attachment.
- 2. Let a gas mixture flow into the sensor through the applied tube. The flow shall be in the range of 0.3 1.0 liter/minute during 3 minutes. Keep the gas mixture flowing during the whole procedure.
- Set jumper 3 to position 1-2 for a minimum time of 8 seconds. The air quality LED will blink in green color alternating with the status led in 2 second intervals.
- 4. Verify the zero calibration using the OPA-S or the analog outputs. They should show 0 ppm CO2.
- 5. If zero calibration is not executed (sensor detected unstable gas concentration) wait 10 sec and repeat steps 3 and 4 again. Do not breathe on the sensor!

